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Received 26 January 1989, in final form 20 February 1989 

Abstract. A neural network introduced by Tsodyks and Feigel’man suitable for the storage 
of biased patterns is studied in a randomly diluted form. Coupled evolution equations are 
derived for the two order parameters needed to describe a configuration near to a stored 
pattern. These equations are studied numerically and are found to exhibit non-linear effects 
such as spiralling trajectories and limit cycles. The bifurcations by which the transition to 
no memory occurs are illustrated. It is seen that a nominated pattern may not be within 
the basin of attraction of the memory fixed point correlated with it. The structure of a 
memory fixed point is investigated and found to be more complicated than a single 
configuration. Finally the situation where two patterns are highly correlated is examined 
and phase boundaries separating the regimes of no memory, undistinguishing memory and 
distinguishing memory are constructed. Multiple storage of a pattern does not improve 
its recall without appropriate modification of the thresholding parameter. 

1. Introduction 

The modelling of McCulloch-Pitts (1943) neural networks by spin systems has become 
an  area of considerable interest within the physics community. In general the aim of 
such models is to choose a matrix of interactions (synaptic connection strengths) 
between the N neurons so that I = cyN nominated configurations (patterns) are fixed 
points of some prescribed dynamics. The initial motivation in studying such models 
was to ascertain their dynamic behaviour because the conditions under which an  input 
or starting configuration evolves to a pattern define how the network acts as an  
associative memory (Hebb 1949, Little 1974). 

Although recent studies have been made concerning such basins of attraction 
(Forrest 1988, Kepler and Abbott 1988, Krauth er a1 1988a, b).  It is the static properties 
of models that have been more extensively studied (Hopfield 1982, Amit et a1 1985a, b, 
1987, Gardner 1986, Bruce er a1 1987). A mean-field theory was developed initially 
for the Hopfield-Little model and yielded a maximum storage capacity cy, (Amit et a1 
1985b). In  this model the neurons are two-state variables S, taking on values i l  (firing 
and non-firing), the interactions are given by the Hebb (1949) rule and patterns to be 
stored are unbiased in that they contain equal numbers of firing and non-firing neurons. 
Some attention has now turned to the situation where the patterns to be stored are 
biased (Amit er a1 1987). In this case the models that yield the highest ac use variables 
V, for the neurons, where V, = 1,O (Willshaw and Longuet-Higgins 1970, Tsodyks and  
Feigel’man 1988, Tsodyks 1988, Buhmann er af 1988, Horner 1988). In  the limit of 
maximum bias, where nearly all neurons in a pattern are not firing and  take the value 
zero, their expressions for CY, are of the same form as Gardner’s estimate for a network 
with unspecified but optimal interaction strengths (Gardner 1987). 
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2104 M R Evans 

The model introduced by Tsodyks and Feigel'man (1988) and  independently by 
Buhmann et a1 (1988) uses a modified Hebb conection rule defined by 

where v r  denotes the value of the ith neuron in the p t h  nominated pattern. The bias 
of the patterns is p so that the quenched random variables 77 follow a distribution 

P ( r l ) = p 6 ( r l - l ) + ( l - p ) 6 ( t 7 ) .  (2) 

We shall be concerned with the case of large bias where p < <  1. The energy function 
is defined as 

The term 8 is an external field (known as the thresholding) which is essential if the 
storage capacity is to be increased over the unbiased case. Mean-field theory (Tsodyks 
and  Feigel'man 1988, Buhmann er al 1988) shows that at the optimum value of 8 and  
zero temperature a first-order phase transition to no  memory occurs at 

The role of 8 in restricting the number of ones in a configuration becomes more 
apparent when one considers the effective field at a site i 

and the updating rule of the dynamics 

where T is the temperature. Mean-field theory, however, gives no information on the 
dynamical behaviour of the model, which is the aspect we examine in this paper. 
Specifically we consider parallel dynamics whereby at each time step all sites are 
updated synchronously by (5) and we examine flows in phase space of a version of 
the model in which the dynamics can be solved exactly. The points to be investigated 
are as follows. 

(i) To what extent are the flows restricted to the region of phase space that has 
the same bias as the patterns? 

( i i )  What are the qualitative features of the basins of attraction of the patterns and  
how d o  they change as the system becomes saturated at a,? 

( i i i )  How does varying the thresholding change the flows? 
In order to carry out this work we need to derive evolution equations for a network 

configuration. In a fully connected network the temporal evolution of configurations 
is a difficult problem to tackle due to the correlations between sites (Gardner et a1 
1987). Only for a finite number of patterns can self-averaging flow equations be derived 
(Coolen and  Ruijgrok 1988). However, it has been shown that if one randomly dilutes 
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a network by cutting most of the connections then the dynamics can be solved exactly 
(Derrida et a1 1987). This approach forsakes an Hamiltonian, because the connections 
become asymmetric, thus the model is defined solely by its dynamics. Derrida el a1 
(1987) found that randomly diluting the Hopfield-Little model changes its characteris- 
tics considerably. In particular the transition at a, becomes second rather than first 
order. However, we will show that when we randomly dilute the connection rule (1) 
the transition remains first order and the fixed-point structure is unchanged. 

The latter result has been noted by Tsodyks (1988) where the connection rule (1) 
was also studied in a randomly diluted form. Tsodyks (1988) considered the model 
defined by continuous-time dynamics, as opposed to the discrete-time dynamics con- 
sidered in the present work, and used the dynamic functional method (Kree and 
Zippelius 1987) to obtain the fixed points. However, information was not obtained 
on the basins of attraction of the fixed points which is the main problem addressed 
in the present work by deriving evolution equations for the order parameters. 

The randomly diluted connection rule is given by 

Jl/ = c, i ( 7 7 ?  -P) (77?  -:l) 
e = ,  

where the distribution of C, is given by 

where C is the mean number of other neurons to which a particular neuron is connected. 
The connection rule is now asymmetric because C, is independent of C,i. When 
C c log N the dynamics become exactly soluble due to the elimination of correlations 
between sites (Derrida and Pomeau 1986, Derrida et a1 1987). 

To express the overlap of the configuration of the system with a single pattern 
(taken to be pattern 1)  one requires iwo order parameters 

It is also useful to consider 

r = m:”+ mil’ .  

These parameters have straightforward physical interpretations: m ,  measures the num- 
ber of ‘correct ones’ (sites that are 1 in the configuration and pattern); m2 measures 
the number of ‘incorrect ones’ (sites that are 1 in the configuration and  0 in the pattern); 
r measures the ‘activity’ (the number of ones in the configuration). The choice of m l  
and m, is convenient because they correspond to averages over 1-sites and 0-sites of 
the pattern respectively. The asymmetry between the fields at the two types of site 
necessitates this separation. 

2. Derivation of evolution equations 

We now proceed to derive equations for the evolution of the order parameters. The 
calculation outlined here is an  extension of that performed by Derrida er a1 (1987). 
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Consider the situation where is finite but m \ ” - O ( l / N p ) ,  for p > 1. This 
requires r - O( 1). In  this situation the configuration is near to pattern 1 and we need 
only consider the two order parameters associated with pattern 1. With this in mind 
we will d rop  the pattern 1 superscript from the order parameters. By calling a site 
that takes value one in pattern 1 a ‘1-site’ we can express the order parameters as 

(11) m l (  t + A t )  = (( V,  ( t  + At))) I-s l tec  

=([ l + e x p (  -y)]-’) 
I-sites 

= ([ 1 +exp(  -?)]-I) 0 - s ires  

where the single angular bracket indicates an average over sites and the double angular 
brackets an  additional thermal average. To perform the site averages we must construct 
expressions for the field distributions. As the configurations are near to pattern 1 we 
can split the field into a signal term from pattern 1 and a noise term from the other 
patterns: 

K I K  

h~(t)=(77f-p)  1 ( q L - P ) V k ( t ) S  1 1 ( ? f - p ) ( + p ) v L ( t ) - e  (15) 
k = l  p = 2  !%=I 

where the k index labels the K sites that are connected to site i(Cik = 1). For a site 
k that is a 1-site 

(16) Vk(t)  = 1 with probability m,( t )  

and for a site k that is a 0-site 

V k ( f )  = 1 with probability m z ( t ) .  
(1 -P) 

x ( (1  -P)2Pr( t ) )  Y 1  - P ( t ) )  ~ ~ ~ h i + Y 2 + t , i f h , . K ( I - l J .  

The S terms are the signal, coming from the first term on the R H S  of (15), and the N 
terms are noise. For example one of the K signal terms will be an  S, term if 77; = 1 
and V, = 1, the probability of which is p m ,  . As N + m with C << log N the multinomial 
probabilities reduce to independent binomial probabilities for SI, S 2 ,  N ,  , N 2 ,  N 3 .  One 
finds that the N ,  distribution has the largest variance by at least a factor l /p .  Thus 



Random dilution in a neural network for biased patterns 2107 

in the limit p<< 1 an average over the field is equivalent to a Gaussian average over 
the NI noise with the other terms in (18) set to their means. On performing such an 
average for m ,  and m2 and discarding terms of order p one obtains 

where 

To = T /  Cp f f = l / C  e, = e/ c p .  

At T = 0 the integrals appearing in (19) can be written as Gauss error functions to give 

where 

2 
erf(x) =-p /: e-'2 dt. 

One could also consider the model defined by random sequential dynamics where 
at each time step a site is chosen randomly and updated by rule ( 5 ) .  This model would 
have, in place of the map (20), the flow 

" " = ' [ l + e r f ( ( 2 f f p r , ' / 2 ) ]  m1 - 0,) - m ,  
d t  2 

% = l [ l - e r f (  6 0  ) ] - m 2  
dt  2p (2apr )  1'2 

which is similar in form to the Wilson and Cowan (1972) evolution equations for 
populations of interacting excitatory and inhibitory neurons. The fixed points of (20 )  
and (22 )  are identical and one would expect that the trajectories in the m1-m2 plane 
near to these fixed points are qualitatively the same. For simplicity only the model 
using parallel dynamics is considered further. 

2. I. Discussion of evolution equations ana' their $xed-point structure 

In studying the map ( 1 9 )  we are primarily interested in fixed points that are highly 
correlated with the patterns. These fixed points will be referred to as memories to 
distinguish them from the nominated patterns. Remarkably the fixed point equations 
of (19 )  are equivalent to the saddle point equations derived for the fully connected 
model (Tsodyks and Feigel'man 1988). This suggests that the Gaussian treatment of 
the noise from uncondensed patterns used here is correct even for the fully connected 
model in the limit p << 1 .  This can be explained by realising that in a V-model network 
it is only the 1s that interact and for the case of patterns with high bias comparatively 
few 1s are shared by patterns. Thus there is little correlation within the noise. 
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We can use the analysis of Tsodyks and Feigel’man (1988) to write down approximate 
forms for critical quantities. Firstly at zero temperature a memory exists u p  to a value 
of a given by 

for 1 - 8 >> [log and  

for higher values of 8. As a + 0 the transition temperature is 

( 1  -8,) 
Ilog(1- e0)l. 

Tc = 

In these equations it can be seen that 8, controls the performance of the network. 
Figure 1 illustrates how Bo controls the position of the memory at T = 0. At the lower 
Bo values the activity is greatest but that means there are incorrect 1s present; at higher 
values the activity is lowered but we have more incorrect Os. 

Bearing in mind that 8 is present in order to control the level of activity then a 
qualitative look at how r comes into the map (19) is appropriate. The width of the 

j 0.10 
l 

e0 

Figure 1. A plot o f  the m, (broken curve) and m2 (full curve) values of the memory fixed 
point against Bo for p = and a = 200. 
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noise is 2ar. An increase in m ,  or m2 will increase the noise which in general will 
decrease m,  but increase m z .  This constitutes a feedback loop in the activity which 
may become delicately balanced. The outcome of this is some curious non-linear 
effects to be discussed in the next section. The fact the activity is not rigidly constrained 
by the dynamics is reflected by the existence of two fixed points that are not correlated 
with the patterns. These are the ‘all zeros’ fixed point m, = m2 = 0 and the high activity 
fixed point with r - O( l / p ) .  The second of these is outwith the region of validity of 
(20 )  because for such a large activity the configuration will have finite m, overlaps 
with more than one pattern. Although this fixed point’s position cannot be determined 
by (20) it does exist in the model and its effect on trajectories near to a pattern is 
evident in the next section. 

2.2. Numerical study of evolution equations 

One of the key points to investigate in a neural network is how it acts as an  associative 
memory. How does a given input or starting configuration evolve and under what 
conditions will the system iterate to a memory, thus making a n  association between 
the input and  that memory? Armed with the map (19) we are in a position to examine 
the basins of attraction of the memories, in particular to see how they behave as a 
increases. 

Figures 2 and 3 show trajectories in the m,-m2 plane at zero temperature, p = 
and selected values of 8 and a. They show sequences in which a increases past some 
critical value. In figure 2 at a =260 the memory is an  attractive node and  there is a 
saddle point to its lower left which limits the memory’s basin of attraction. There is 
also a saddle point out of the frame which acts as a watershed for trajectories reaching 
the high activity fixed point. At a =261 the qualitative structure remains the same. 
However a trajectory starting at the pattern (marked by a cross) is no  longer within 
the memory’s basin of attraction. When a reaches 262 the memory and  lower saddle 
point have annihilated. This sequence of memory loss can be classified as a saddle-node 
bifurcation. 

In figure 3 the memory starts as a spiral. The two saddle points mentioned above 
are again present. At a = 258 the pattern is no longer within the memory’s basin of 

a = 260 a = 261 a = 2 6 2  

0.8 0.9 1.0 0.8 0.9 1.0 

m1 

Figure 2. A sequence of frames showing trajectories of (20) near to the pattern which is 
marked by a cross. In the sequence a passes through its critical values. When a trajectory 
leaves the frame, a 1 indicates that i t  continues to the high activity fixed point and a 0 
indicates that it continues to the all-zeros fixed point. The fixed parameter values are 
p = and Bo = 0.699. 
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U = 255 
0.2 

0.1 

0 

a ~ 2 5 0  a = 261.4 

0 8  0 9  10 0.8 0 9  1 0  

Figure 3. A sequence of trajectories as in figure 2. The fixed parameter values are p = 

and Bo = 0.6917. 

90 
Figure 4. A plot of a, (full curve) and n2 (broken curve) against Bo for p = 
range of Bo is that within which both a values are maximised. 

The 
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attraction. The memory destabilises at a = 261.4 and trajectories starting from it spiral 
out to an attractive limit cycle. At CY = 265 this limit cycle is no longer present and all 
trajectories leave the frame. However, at CY = 268 the spiral restabilises and so a memory 
is again present. When a reaches 270 the lower saddle and memory have annihilated 
and there are no fixed points present in the frame. The destabilisation and restabilisation 
of the memory, of which this sequence is an example, will be referred to as intermittency. 

These two figures show that the transition to no memory is first order and illustrate 
the two types of memory loss that are present in the model-saddle attractor bifurcations 
and spiral destabilisations. At lower Bo values the same mechanisms are present but 
spirals destabilise to the high activity fixed point and the higher saddle point is involved 
in the bifurcations. 

One can interpret the various memory losses as the basins of attraction of the all 
zeros and high activity fixed points becoming large enough to encroach on the memory. 
The value of @ then determines which of these basins of attraction reaches the memory 
first. Figure 3 is in the intermediate-@ regime where both non-memory fixed points 
are strongly affecting the memory. This gives rise to spiralling, limit cycles and 
intermittency. 

The figures also illustrate the need for a more careful definition of the critical value 
of a. When considering neural networks as associative memories one would like the 
pattern to be within the basin of attraction of the memory fixed point so that there is 
a clear association between them. The value of a at which this is no longer so will 
be called cy,. However, a I  is not a parameter directly relevant to stability analysis of 
the fixed points, so unless one can find formulae for the basins of attraction it is only 
from numerical studies of flows as performed in this work that a ,  can be determined. 

_ _ _ _ _ _  r - - - - - - - - -  
c 

240 1 
i 

- 0.94 

- 0.12 

- 0.90 m1 m2 

i i 

1 

e0 

Figure 5. A plot of a, against Bo at p = lo-' with the values of the order parameter memory 
fixed points at a ,  superimposed. Full curve, a , ;  broken curve, m,; dotted curve, m 2 .  
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A second a value of importance is a2 which we define to be the lowest value at which 
there is no  memory. By using a, we avoid dealing with any intermittancy that may 
be present. 

Figure 4 shows that a, and a, differ only in the region of 0 values that give the 
highest storage. The slight kink on the left of a2 curve is where the attractor becomes 
a spiral. Figure 5 shows a, has the 0 dependence given by (23) and (24), and how 
the position of the memory at a, moves sharply in the transition region between the 
two forms. 

3. Structure of the memory 

Derrida et a1 (1987) showed, by following the evolution of the overlap between two 
different configurations that were within the basin of attraction of the same memory, 
that a memory was not a single configuration. The method will be followed in the 
present work to investigate whether the same result is obtained and if so whether the 
asymmetry between 1s and  Os is reflected in the structure of the memory. We take two 
configurations {V , }  and { q }  which have finite overlaps m, and 6, with the same 
pattern, but infinitesimal overlaps with the other patterns. We define an  overlap 
parameter between the two configurations 

4 = 41 + 42 (26) 

where 

Here 9, measures the number of 1-sites that differ in the two configurations; q2 measures 
the number of O-sites that differ. If q -* 0 as t + CO then the two configurations eventually 
become identical. Using the same averaging as for the evolution of the m, and m, 
order parameters 
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is given by 

P ( S , , S 2 .  . .  S 8 ,  N ; ,  N f ,  N : ,  N :  , . . . ,  N i )  

The S and N refer to the signal and noise terms of equation (15). The subscripts on 
these letters correspond to the eight possible situations at a site k: 

f 7 k  vk 

1 1 
1 1 
1 0 
1 0 
0 1 
0 1 
0 0 
0 0 

The superscripts on the noise terms indicate the contribution to the field. For example 
N i  is the number of (1 - p ) '  contributions to the field from sites of type (1) in the 
above table. As N + CO followed by C and with p << 1 an average over the field reduces 
to a triple Gaussian average over 

N ; +  N :  N:+ N:, N:+ N: .  

At T = 0 we obtain 

) 
a p ( m ,  + m,+ G I +  f i 2 - q ) y +  m, - eo 

a p ( m ,  + mz-  A, - f i2+  q )  4 , ( t + h t ) = 2 [ 1 - J-y 
xerf(' 

erf(' 

11 a p ( m ,  + m2+ 61, + f i 2 - q ) y + f i I  - e,, 
ap(-m,  - m2- f i ,  - f i , + q )  
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(1 - P I  [ -11 d . ~  cup(ml + m,+ fil + f i2  - q ) y  - eo 
C Y ~ (  mi  + m2 - fi i  - rG2 + q )  

q2( t + A t )  =- -er(‘ 
2P 

x er(‘ 

7r1 

a p ( m i  + m,+ 5, + G 2  - q ) y  - eo 
a p ( - m i - m , + r G i + 5 , + q )  (33) 

where on the RHS of (33) and (34) m i ,  m 2 ,  G I ,  f i 2 ,  q are the values at time 1. As 
t + ix, m i ,  f i l ,  m 2 ,  f i2  attain the values given by the fixed points of (20) and  the fixed 
points qT and qT are given by 

As q # 0 the memory is not a unique configuration. Given this one might suppose 
that a memory is any corrupted version of the pattern with the appropriate number 
of incorrect 1s and Os. This would mean q,* = 2m,*, qT = 2( 1 - mT). However on 
inspecting figure 6 one sees that these equations are not obeyed. One therefore 
concludes that a memory configuration is a noisy version of the pattern with the 
incorrect sites not chosen randomly. For the parameter values in figure 6 the numbers 
of incorrect 1s and Os are approximately equal but as q t  2: m f  and q f  < ;( 1 - mT) the 
incorrect Os vary more than the incorrect 1 s between memory configurations. 

0.12 1 

0.08 . 

0.02 L 

0 L 

260 0 260 4 260 0 261 2 261 6 262 0 

U 

Figure 6. A plot of the fixed points of the overlap parameters i q , ,  q 2 )  and the order 
parameters ( m ,  , m 2 )  against a for 8, = 0 699 and p = Full curve, m z ,  short broken 
curve, 1 - m 2 ,  long broken curve, q , ,  dotted curve, q2 
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4. Higher than random overlap between patterns 

In the Hopfield model it has been found that multiple storage of a pattern improves 
its recall (Fontanari and  Koberle 1988a). Storing a pattern twice is the extreme case 
of storing two patterns that have higher than random overlaps with each other. The 
latter situation has been studied in both the random diluted (Derrida et a1 1987) and  
fully connected (Fontanari and Koberle 1988b) Hopfield model. In both cases it gives 
rise to three distinct phases: at low a there is a separate memory for each pattern; as 
cy is increased there is a single memory equally correlated with both patterns and at  
higher a there is no memory. In Derrida et al (1987) the range of a values for the 
undistinguishing memory includes values that are greater than a,  for the recall of the 
random patterns. This also applies at the higher values of the correlation between the 
two patterns in Fontanari and Koberle (1988b). In  this section we shall see that this 
improvement in recall is nor exhibited in the model studied in the present paper. 

We define an overlap parameter between two patterns 

and use order parameters as before with the pattern index reinstated: 

We let patterns 1 and 2 have overlap Q - O( 1) and all other pattern pairs have overlap 
Q - O ( p ) .  In deriving evolution equations for the three order parameters required we 
use the same techniques outlined in the previous sections and so here we will just 
write down the zero temperature result: 

These equations exhibit the three fixed-point regimes mentioned above. However, to 
construct a phase diagram we must pick a criterion for the phase boundaries. In figure 
7 the criterion used is that starting from one of the patterns the fixed point to which 
the map (38) iterates classifies the phase to which the a, Q values belong. This is 
equivalent to using an  a I  definition for the critical value of a. Figure 7 shows that 
only at comparatively high Q values is the undistinguishing memory phase present. 
In  fact there is only a small range of Q values where all three phases are present. 
Except at very low Q values the storage capacity is reduced compared with 0 2 .  
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c 
I Distinguishing 

150 k 
! 
c 

memory 

a 

I 
100 t 

L 

i 
1 , , , , , , , , , 

w t  
, 

1 

0 2  0 4  0 6  0 8  1 0  0 

Q 
Figure 7. A phase diagram representing the three phases discussed in the text. The 
thresholding is Bo = 0.699. 

These observations reflect the importance of the thresholding parameter and  activity 
of a configuration. A memory that does not distinguish between the patterns (m, = Q) 
will have too low an  activity to be a fixed point at low Q. Although a Q overlap 
between patterns will strengthen the connections between shared Is, this will lead to 
higher activities in trajectories near to the patterns. This may destabilise the memories 
that distinguish between the patterns at lower a than before. Consider the case of 
storing a pattern twice ( Q  = 1). Equations (38) reduce to (20) if 

eo = 213; 

a =4a’ 

where the primed values are those for storing the pattern once. Hence an  increase in 
the maximum a for recall of the pattern is possible only if Bo is suitably increased. 

5. Discussion 

We have shown that the method of random dilution gives considerable insight into 
the flows and  therefore recall properties of a V-model network. Several key features 
of V-model networks have emerged in this work. The mathematical structure of the 
memory fixed point changes with the thresholding. The importance of the thresholding 
lies in its control of the activity of a configuration, which is not constant in flows due  
to the distinct active and  passive roles of the 1s  and Os. It might be fruitful to consider 
more general thresholdings by introducing site or time dependence. The first scheme 
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might allow the storing of patterns with higher than random overlaps to improve 
performance. The second scheme might be able to exploit the dependence of basin 
of attraction on thresholding to allow wayward trajectories to be captured by the 
memories. 

Several surprising features of the model have also been illustrated. Firstly the 
fixed-point equations of the map (20) are equivalent to the mean-field equations of 
the fully connected model, implying that random dilution has not changed the features 
of the model to a great extent. Tsodyks (1988) also noted this ‘universality’ for the 
continuous-time model. Secondly in considering the storage capacity there is a need 
for careful definition of the critical value of a, due  to the possibilities of intermittancy 
and the pattern being outwith the basin of attraction of the memory. Finally the 
breakdown of a memory does not occur through its basin of attraction vanishing 
continuously; instead we see more complicated mechanisms. These lead to the possibil- 
ity of the memory taking the form of a limit cycle. It would be interesting to use the 
methods of bifurcation theory to analyse the flow (22)  to give more information on 
this topic. 

It is worthwhile reiterating a comment of Buhmann et a1 (1988) that fixed points 
uncorrelated with the patterns are clearly distinguishable from memories due to the 
differing levels of activity. Thus one can tell, without knowing the patterns, whether 
an  association has been made between an  input and  a stored pattern. 
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